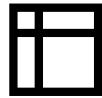
Persistent Identification of Instruments

Louise Darroch, Alessandro Oggioni, Cristiano Fugazza, <u>Markus Stocker</u>

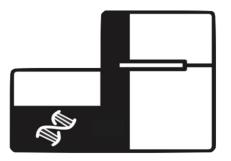


bit.ly/2figXYn

Collaborative session notes

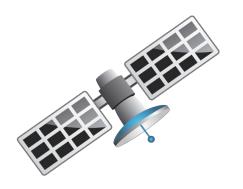
PID

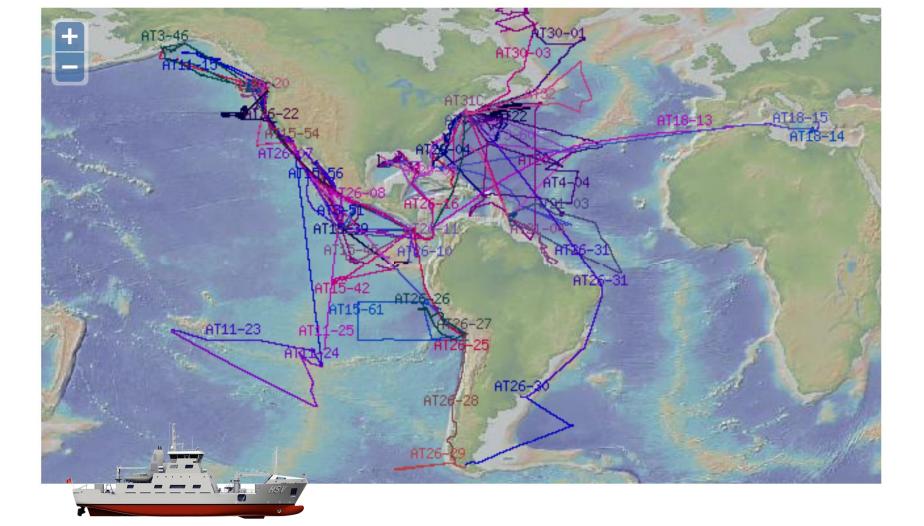
Identification of instruments is not new



Journal of large-scale research facilities

... articles describing large-scale scientific equipment


... reference large-scale facilities in publications



"To interpret a digital dataset, much must be known about the hardware used to generate the data, whether sensor networks or laboratory machines."

"When questions arise [...] about calibration [...], they sometimes have to locate the departed student or postdoctoral fellow most closely involved."

-- Christine L. Borgman Big Data, Little Data, No Data MIT Press, 2015 "To interpret a digital dataset, much must be known about the hardware used to generate the data, whether sensor networks or laboratory machines."

"When questions arise [...] about calibration [...], they sometimes have to locate the departed student or postdoctoral fellow most closely involved."

-- Christine L. Borgman Big Data, Little Data, No Data MIT Press, 2015

Working Group

- Envisioned is a WG under IG PID umbrella
- Develop a concept for persistent identification of instruments
- Focus on
 - Identifier type
 - Resolution of identifier onto landing pages describing instruments
 - Schema for metadata registration
- Case Statement for P11 Berlin

rd-alliance.org/groups/persistent-identification-instruments

pid-instruments@rda-groups.org

Current state of PIDs for active instruments

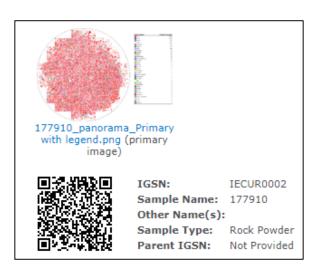
LOUISE DARROCH
BRITISH OCEANOGRAPHIC DATA CENTRE (BODC)
NATIONAL OCEANOGRAPHY CENTRE (NOC)

RDA Tenth Plenary Meeting, Montréal, Canada 19th-21st September 2017

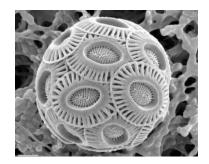
Why PIDs?

It is customary to think that PIDs are only used to cite journals or datasets....

Classic example: Digital Object Identifier (DOI)



How PIDs are being used


Increasingly, PIDs are being used to universally locate and identify physical things or events

A sample

International Geo Sample Number (IGSN)

A biological entity

World Register of Marine Species

Emiliania huxleyi (Lohmann) W.W.Hay & H.P.Mohler, 1967

LSID urn:lsid:marinespecies.org:taxname:115104

Life Science Identifier (LSID)

A researcher

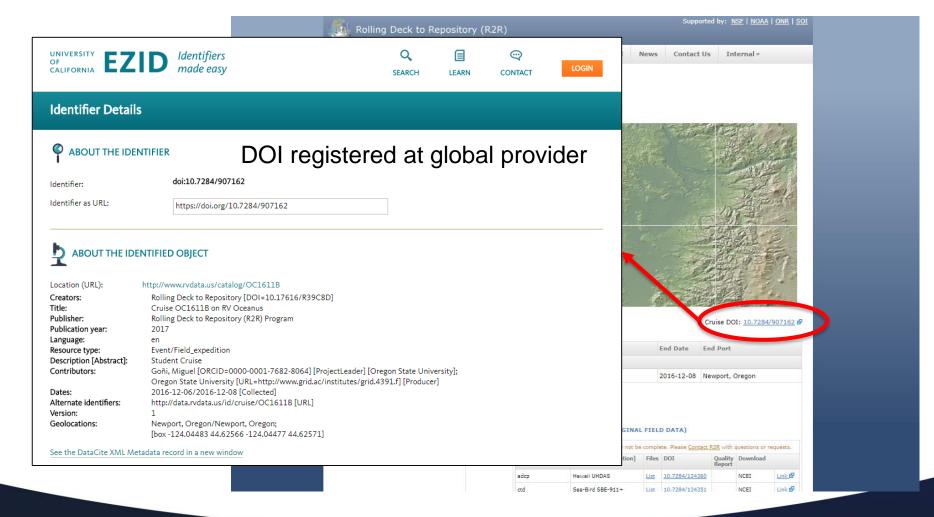
Markus Stocker

ORCID ID

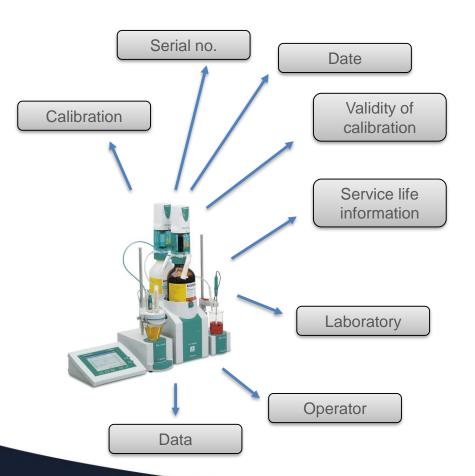
Dorcid.org/0000-0001-5492-3212

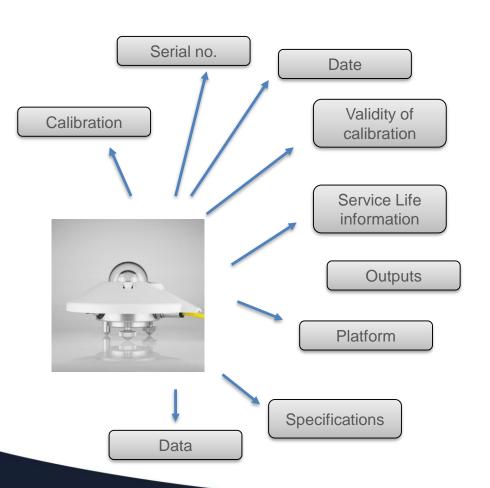
ORCID ID

PIDs and instruments


- PIDs are already being used to identify instruments and things related to instruments (some examples below)
- NOTE: Not all the same PID types used

What	PID	Thing/event	Who
Platforms	https://doi.org/10.5065/D6DR2SJP	HIAPER Gulfstream GV aircraft	Earth Observing Laboratory (EOL)
Platform instances	http://vocab.nerc.ac.uk/collection/C17/current/32OC/	RV Oceanus	ICES
Deployments	https://doi.org/10.7284/907162	Cruise OC1611B on RV Oceanus	Rolling Deck to Repository (R2R)
Instrument models	SDN:L22::TOOL0882	Rockwell Collins PLGR 96 GPS	SeaDataNet/NERC Vocabulary Server
Instrument instances	http://linkedsystems.uk/system/instance/TOOL0969 _1234/current/	Aanderaa 4531 O2 optode (serial #1234)	SenseOCEAN
Data	https://doi.org/10.1594/PANGAEA.879596	Ostracods in permafrost deposits from the Bykovsky Peninsula 1998/1999.	PANGAEA


An example of a deployment


Audit trail

- Linking to the associated metadata about an analytical result is important in some regulated industries (traceability)
- Preventing mix-ups and editing errors gives assurance to data (e.g. climate change studies -> policy)

Audit trail

- Advances in technology mean we are generating more data than ever
- Linking to associated metadata helps us quickly determine if sensors are fit for purpose
- It also enables machines to automate and aggregate sensors and information

What metadata already exists?

- What existing metadata could be resolved under a PID for an instrument instance?
- Many established lists of standardised terms (controlled vocabularies) already in use, especially in the marine domain. E.g.

1 -- Hitachi U3010 UV-Visible scanning spectrophotometer --URI http://vocab.nerc.ac.uk/collection/L22/current/TOOL0824/ Identifier () SDN:L22::TOOL0824 Preferred label (en) Hitachi U3010 UV-Visible scanning spectrophotometer Alternative label (en) Hitachi U3010 spectrophotometer A bench-top scanning spectrophotometer which operates in the UV-visible wavelegnth range (190 nm - 900 nm). It is Definition (en) fitted with a grating single monochromator (Seya-Namioka mount) which reduces stray light to 0.015%. Sample volumes as small as 5 uL can be analysed. Version Info () Deprecated() false http://vocab.nerc.ac.uk/collection/L05/current/LAB20/ Broader 2015-01-29 11:24:26.0 Date ()

Example controlled vocabularies

Device type

SeaDataNet Device Categories (L05)

(http://vocab.nerc.ac.uk/collection/L05/current/)

Device model

SeaVox Device Catalogue (L22)

(http://vocab.nerc.ac.uk/collection/L22/current/)

Outputs

- Climate Forecast Standard Names
- BODC Parameter Usage Terms (P01)

(http://vocab.nerc.ac.uk/collection/P01/current/)

Specifications

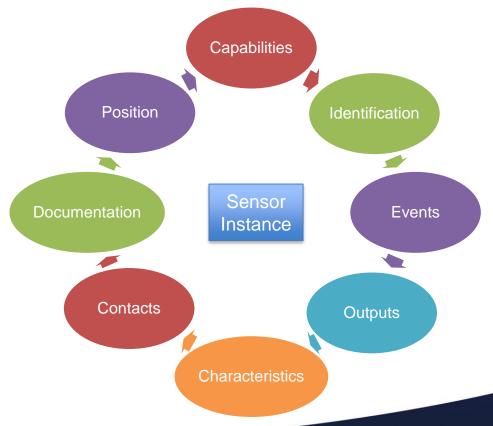
Marine SWE Profiles (W04-W05)

(e.g. http://vocab.nerc.ac.uk/collection/W04/current/)

 Marine Metadata Interoperability Project Ontology Registry and Repository

(http://sensorml.com/ont/swe/property)

Individual L22 instrument model published on the NERC Vocabulary Server (NVS2.0)



Instrument metadata schemas

 Schemas have been developed for publishing sensor models and instances on the Semantic Sensor Web

- OGC SensorML
- W3C Semantic Sensor Network

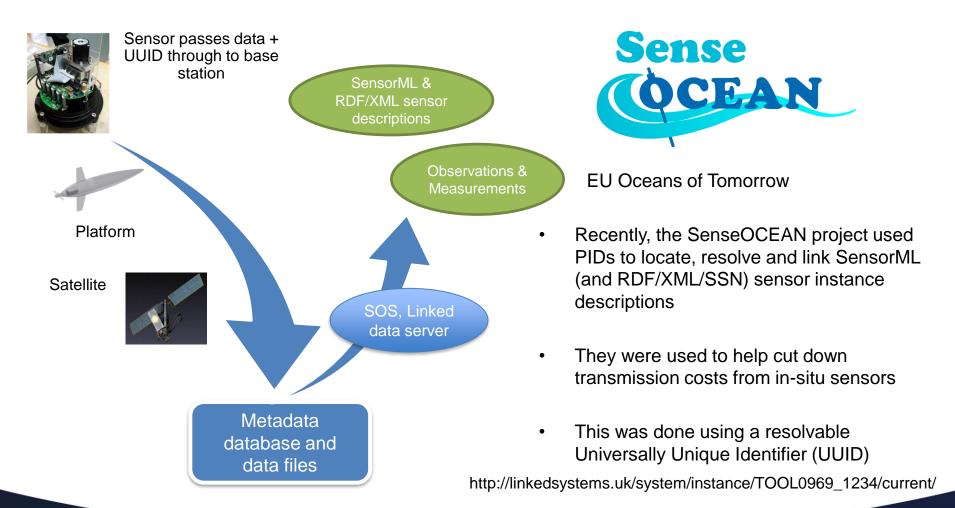
Example of a metadata schema

```
Open Geospatial Consortium (OGC)
```

XML encoding for describing sensors

Enables sensors and processes to be

- better understood by machines
- utilized automatically in complex workflows
- easily shared between intelligent sensor web nodes.


```
Characteristics
<!-- ------ -->
<sml:characteristics name="generalProperties">
    <sml:CharacteristicList>
        <sml:characteristic name="physicalProperties">
           <swe:DataRecord definition="http://sensorml.com/ont/swe/property/PhysicalProperties">
                <swe:label>Physical Properties</swe:label>
               <swe:field name="PhysicalProperties">
                   <swe:DataRecord>
                       <swe:field name="Weight">
                           <swe:Quantity definition="http://sensorml.com/ont/swe/property/Weight">
                               <swe:uom code="oz"/>
                               <swe:value>10</swe:value>
                           </swe:Quantity>
                       </swe:field>
                       <swe:field name="Length">
                           <swe:Quantity definition="http://sensorml.com/ont/swe/property/Length">
                               <swe:uom code="in"/>
                               <swe:value>4.5</swe:value>
                           </swe:Quantity>
                       </swe:field>
                       <swe:field name="Width">
                           <swe:Quantity definition="http://sensorml.com/ont/swe/property/Width">
                               <swe:uom code="in"/>
                               <swe:value>2.5</swe:value>
                           </swe:Ouantity>
                       </swe:field>
                       <swe:field name="Height">
                           <swe:Quantity definition="http://sensorml.com/ont/swe/property/Height">
                               <swe:uom code="in"/>
                               <swe:value>1.4</swe:value>
                           </swe:Quantity>
                       </swe:field>
                       <swe:field name="CasingMaterial">
                           <swe:Category definition="http://sensorml.com/ont/swe/property/Material">
                               <swe:value>Aluminum</swe:value>
                           </swe:Category>
                       </swe:field>
                   </swe:DataRecord>
               </swe:field>
           </swe:DataRecord>
        </sml:characteristic>
```


SensorMI

Example of metadata schema

Summary

- PIDs are increasingly being used to identify things or events
- Many different PID types are used to identify instruments and things associated to instruments
- There is no universal agreement on one method
- Benefits in linking an active device to associated metadata (e.g. traceability, machine automation)
- Controlled vocabularies to describe metadata associated to sensor instances exist, especially in the marine domain
- Defined metadata schemas are being used for publishing sensor model and instance descriptions on the Semantic Sensor Web

RDA P10: Introduction to ePIC PIDs for Instruments

Ulrich Schwardmann

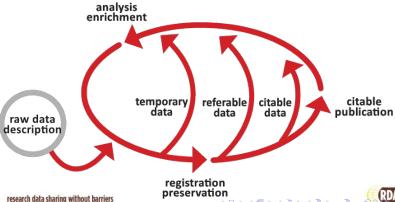
Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG)

Am Fassberg, 37077 Göttingen ulrich.schwardmann [at] gwdg.de

21 September 2017, Montreal

<□ > <□ > < □ > < □ >

The Research Data Life Cycle


data intensive research is highly collaborative

- scientists share data already in an early research state
- ad hoc techniques for sharing are often prohibitive
- reliable references can accellerate the Research Life Cycle

Schwardmann Mission Trust and PIDs for Data Granularity Data Type Registries

Introduction to ePIC

Ulrich

The Research Data Life Cycle

data intensive research is highly collaborative

- scientists share data already in an early research state
- ad hoc techniques for sharing are often prohibitive
- reliable references can accellerate the Research Life Cycle

analysis enrichment temporary referable citable citable publication ďata data data raw data description registration preservation

Introduction to ePIC

Ulrich Schwardmann

ePIC

Mission Trust and

DONA and

Research Data

PIDs for Data Intensive Research Granularity

Data Types

Data Type Registries

The ePIC Members

build a network of currently six strong scientific service providers that signed a contract

Ulrich Schwardmann

Introduction

to ePIC

to ensure a reliable and persistent identifier infrastructure

Trust and Reliability

devoted to the needs of the research community at large.

Research Data

PIDs for Data Granularity

for sharing during the research during the res process

- with finer granularity and
- PID coupled metadata (PID InfoTypes)

Performance Computing

Quality of Service in ePIC

- Conditions of Operation
 - user management, privacy protection and secrecy
- incident management and monitoring
- support system with agreed responsabilties
- certification of ePIC PID services
- several policies for PID minting and update agreed
 - others are still under discussion
- quality of resolution
 - audits can be requested
- community dependend policies (on prefix level)

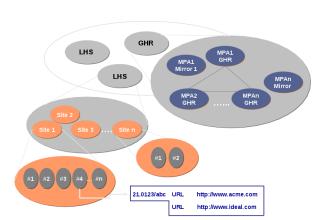
Introduction to ePIC

Ulrich Schwardmann

Mission

Trust and Reliability

PIDs for Data Granularity


Data Type

4 0 1 4 4 4 5 1 4 5 1

DONA Handle. Net Multi Primary Administrators

Multi Primary Administrator GHR (since 8th Sep. 2015)

Introduction to ePIC

Ulrich Schwardmann

ePI

Mission Trust and

DONA and Handle

Research Dat

PIDs for Data Intensive Research Granularity

Data Type:

Data Type Registries

Sharing Data in Research

data sharing of early results requires

- a reliable framework of trust
- transparent and standardized policies
- registration for referable data
 - stable references
- · strong coupling between data and metadata

PIDs can be the pivot to fulfil these requirements

Introduction to ePIC

Ulrich Schwardmann

ePIC

Mission Trust and Reliability

DONA and

Research Data

Intensive Research

Granularity

Data Types

Data Type Registries

40) 48) 43) 43)

PID Information Types

- are additional metadata stored in the PID database.
- intended to be directly accessible independent of any redirection
- typical cases are
 - checksum
 - mime type (incl. version)
 - embargo time
 - expiration date
 - add. metadata file
 - basic Dublin Core
 - · access methods, data formats

Introduction to ePIC

Ulrich Schwardmann

Mission Trust and

PIDs for Data

Intensive Research Granularity

Data Type Registries

4 D F 4 D F 4 D F 4 D F

8 / 14

Granularity

digital objects shared with other scientists for investigation often have a finer granularity

- use cases are
 - single experiments
 - simulation output and/or parameter sets
 - single files, tables, pictures, single scanned pages or video/audio sequences
 - sensor outputs (snapshots, dynamic data)
 - software and software versions
- the minting of a huge number of PIDs can be necessary (and favorable)
- in some cases these sets of digital objects are highly structured
 - and accessible by parameterized services
 - this must be recognizable by data types
 - here also templates or fragment identifiers can be a solution

Introduction to ePIC

Ulrich Schwardmann

Mission

PIDs for Data

Granularity

Data Type

Templates or Fragment Identifier

rules for strings appended to the PID (see IETF RFC 6570)

- often used to address service functions operating on digital objects
- the template implementation in the handle system is simply a rewrite rule
- delimiter and replacement is configurable at prefix level
- example
 - delimiter is @, which is replaced by ?
 11858/00-ZZZZ-0000-0001-CCD1-4@aaa=bbb&ccc=ddd
 - translates into: http://www.ser.gwdg.de/~tkalman/downloads /formtest.php?aaa=bbb&ccc=ddd
- be careful: fragment identifier are much less persistent then the PIDs itself
- the rewrite rule can be much more complex:
 - replace semantic string elements like URLs by other strings
 - use delimiter strings instead of characters

Introduction to ePIC

Ulrich Schwardmann

ePIC Mission

Reliability

DONA and Handle

PIDs for Data

Intensive Research Granularity

Data Types

Data Type Registries

Data Type Registries

- The PID Information Type (PIT) definitions are kept in Data Type Registries (DTRs).
- Currently a couple of such DTRs exist,
 - based on a software called Cordra¹, developed from a RDA WG outcome.
 - using a special vocabular for type specifications.
 - This vocabular is partly extended for the purpose of the development presented here.
- ePIC also runs such a DTR
- Interoperability: a process of standardisation and federation for DTRs is ongoing.

Introduction to ePIC

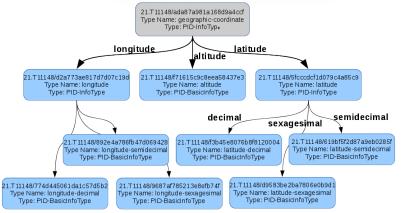
Ulrich Schwardmann

ePIC Mission

DONA and

Research Data

PIDs for Data Intensive Research Granularity


Data Types

Data Type Registries

Hierarchies in Metadata

Example: geographic coordinate.

Schwardmann
ePIC
Mission

Introduction to ePIC

Ulrich

OONA and

Research Data

PIDs for Data Intensive Research Granularity

Data Types

Registries

the ePIC DTR can express and validate such hierarchies

The ePIC DTR Homepage

http://dtr.pidconsortium.eu/ PID InfoType states are:

- in preparation (21.T11148),
 - http://dtr-test.pidconsortium.eu/
- candidate, approved, deprecated (21.11104)
 - http://dtr-pit.pidconsortium.eu/

4 D F 4 D F 4 D F 4 D F

Introduction to ePIC Ulrich

Schwardmann

Mission Trust and

Many Thanks

Questions ???

Contact@ePIC:

support@pidconsortium.eu

Contact@GWDG:

Ulrich Schwardmann

T: 0551 201-1542, E: ulrich.schwardmann@gwdg.de

Introduction to ePIC

Ulrich Schwardmann

ePIC

Mission Trust and

DONA and Handle

Research Data

PIDs for Data Intensive Research Granularity

Data Types

Data Type Registries

4 ロト 4 間 ト 4 恵 ト 4 恵 ト

- Focus on
 - Identifier type
 - Resolution of identifier onto landing pages describing instruments
 - Schema for metadata registration
 - Content negotiation and machine readability
- Many projects (in Earth science) building "sensor registries"
 - Can this WG lay the foundations for a global instrument registry?
 - o Deliver a recommendation for an organization to implement, run service
- Instruments, great but
 - Also platforms and deployments
 - Links between them
- Involving manufacturers
 - Do we need to involve them
 - Should they register instruments and provide landing pages
- PID type and resolution mechanism: Existing or new?
- Involve disciplines: earth science, astronomy, life sciences, chemistry,
- Co-chair from US/Australia