
Data Citation
Working Group Mtg @ P13
April 3 2019, Philadelphia

2Agenda

 12:00 Introduction, Welcome
 12:10 Short description of the WG recommendations
 12:30 Reports by adopters / pilots
 13:00 Review of Recommendations text / lessons learned
 13:20 Other issues, next steps

3Welcome and Intro

Welcome!
to the maintenance meeting

of the

WGDC

4Agenda

 12:00 Introduction, Welcome
 12:10 Short description of the WG recommendations
 12:30 Reports by adopters / pilots

 WGDC Recommendations in ESIP Guidelines
 Implementation in Dendro
 Implementation in CKAN
 Implementation in OpenEO

 13:00 Review of Recommendations text / lessons learned
 13:20 Other issues, next steps

5Identification of Dynamic Data

 Usually, datasets have to be static
 Fixed set of data, no changes:

no corrections to errors, no new data being added
 But: (research) data is dynamic
 Adding new data, correcting errors, enhancing data quality, …
 Changes sometimes highly dynamic, at irregular intervals

 Current approaches
 Identifying entire data stream, without any versioning
 Using “accessed at” date
 “Artificial” versioning by identifying batches of data (e.g.

annual), aggregating changes into releases (time-delayed!)
 Would like to identify precisely the data

as it existed at a specific point in time

6Granularity of Subsets

 What about the granularity of data to be identified?
 Enormous amounts of CSV data
 Researchers use specific subsets of data
 Need to identify precisely the subset used

 Current approaches
 Storing a copy of subset as used in study -> scalability
 Citing entire dataset, providing textual description of subset

-> imprecise (ambiguity)
 Storing list of record identifiers in subset -> scalability,

not for arbitrary subsets (e.g. when not entire record selected)
 Would like to be able to identify precisely the

subset of (dynamic) data used in a process

7

 Research Data Alliance
 WG on Data Citation:

Making Dynamic Data Citeable
 March 2014 – September 2015
 Concentrating on the problems of

large, dynamic (changing) datasets
 Final version presented Sep 2015

at P7 in Paris, France
 Endorsed September 2016

at P8 in Denver, CO
 Since: support for take-up/adoption, lessons-learned

https://www.rd-alliance.org/groups/data-citation-wg.html

RDA WG Data Citation

8Dynamic Data Citation

We have: Data + Means-of-access (“query”)

9Dynamic Data Citation

We have: Data + Means-of-access (“query”)

Dynamic Data Citation:
Cite (dynamic) data dynamically via query!



10Dynamic Data Citation

We have: Data + Means-of-access (“query”)

Dynamic Data Citation:
Cite (dynamic) data dynamically via query!



Steps:
1. Data  versioned (history, with time-stamps)

11Dynamic Data Citation

We have: Data + Means-of-access (“query”)

Dynamic Data Citation:
Cite (dynamic) data dynamically via query!



Steps:
1. Data  versioned (history, with time-stamps)

Researcher creates working-set via some interface:

12Dynamic Data Citation

We have: Data + Means-of-access (“query”)

Dynamic Data Citation:
Cite (dynamic) data dynamically via query!



Steps:
1. Data  versioned (history, with time-stamps)

Researcher creates working-set via some interface:
2. Access  store & assign PID to “QUERY”, enhanced with

 Time-stamping for re-execution against versioned DB
 Re-writing for normalization, unique-sort, mapping to history
 Hashing result-set: verifying identity/correctness
leading to landing page

13Data Citation – Deployment

 Researcher uses workbench to identify subset of data
 Upon executing selection („download“) user gets

 Data (package, access API, …)
 PID (e.g. DOI) (Query is time-stamped and stored)
 Hash value computed over the data for local storage
 Recommended citation text (e.g. BibTeX)

 PID resolves to landing page
 Provides detailed metadata, link to parent data set, subset,…
 Option to retrieve original data OR current version OR changes

 Upon activating PID associated with a data citation
 Query is re-executed against time-stamped and versioned DB
 Results as above are returned

 Query store aggregates data usage

14Data Citation – Deployment

 Researcher uses workbench to identify subset of data
 Upon executing selection („download“) user gets

 Data (package, access API, …)
 PID (e.g. DOI) (Query is time-stamped and stored)
 Hash value computed over the data for local storage
 Recommended citation text (e.g. BibTeX)

 PID resolves to landing page
 Provides detailed metadata, link to parent data set, subset,…
 Option to retrieve original data OR current version OR changes

 Upon activating PID associated with a data citation
 Query is re-executed against time-stamped and versioned DB
 Results as above are returned

 Query store aggregates data usage

Note: query string provides excellent
provenance information on the data set!

15Data Citation – Deployment

 Researcher uses workbench to identify subset of data
 Upon executing selection („download“) user gets

 Data (package, access API, …)
 PID (e.g. DOI) (Query is time-stamped and stored)
 Hash value computed over the data for local storage
 Recommended citation text (e.g. BibTeX)

 PID resolves to landing page
 Provides detailed metadata, link to parent data set, subset,…
 Option to retrieve original data OR current version OR changes

 Upon activating PID associated with a data citation
 Query is re-executed against time-stamped and versioned DB
 Results as above are returned

 Query store aggregates data usage

Note: query string provides excellent
provenance information on the data set!

This is an important advantage over
traditional approaches relying on, e.g.
storing a list of identifiers/DB dump!!!

16Data Citation – Deployment

 Researcher uses workbench to identify subset of data
 Upon executing selection („download“) user gets

 Data (package, access API, …)
 PID (e.g. DOI) (Query is time-stamped and stored)
 Hash value computed over the data for local storage
 Recommended citation text (e.g. BibTeX)

 PID resolves to landing page
 Provides detailed metadata, link to parent data set, subset,…
 Option to retrieve original data OR current version OR changes

 Upon activating PID associated with a data citation
 Query is re-executed against time-stamped and versioned DB
 Results as above are returned

 Query store aggregates data usage

Note: query string provides excellent
provenance information on the data set!

This is an important advantage over
traditional approaches relying on, e.g.
storing a list of identifiers/DB dump!!!

Identify which parts of the data are used.
If data changes, identify which queries
(studies) are affected

17Data Citation – Recommendations

Preparing Data & Query Store
- R1 – Data Versioning
- R2 – Timestamping
- R3 – Query Store

When Data should be persisted
- R4 – Query Uniqueness
- R5 – Stable Sorting
- R6 – Result Set Verification
- R7 – Query Timestamping
- R8 – Query PID
- R9 – Store Query
- R10 – Citation Text

When Resolving a PID
- R11 – Landing Page
- R12 – Machine Actionability

Upon Modifications to the
Data Infrastructure

- R13 – Technology Migration
- R14 – Migration Verification

18Data Citation – Output

 14 Recommendations
grouped into 4 phases:

 2-page flyer
https://rd-alliance.org/recommendations-working-
group-data-citation-revision-oct-20-2015.html

 More detailed report: Bulletin of IEEE
TCDL 2016
http://www.ieee-tcdl.org/Bulletin/v12n1/papers/IEEE-
TCDL-DC-2016_paper_1.pdf

 Adopter’s presentations, webinars
and reports
https://www.rd-alliance.org/group/data-citation-
wg/webconference/webconference-data-citation-
wg.html

19Adopters

 Series of Webinars presenting implementations
 Recordings, slides, supporting papers
 https://www.rd-alliance.org/group/data-citation-wg/

webconference/webconference-data-citation-wg.html

 Automatically generating citation text from queries (Recommendation
10) for RDBMS and XML data sources

 Implementing of the RDA Data Citation Recommendations by the Climate
Change Centre Austria (CCCA) for a repository of
NetCDF files

 Implementing the RDA Data Citation Recommendations for
Long-Tail Research Data / CSV files

 Implementing the RDA Data Citation Recommendations in the Distributed
Infrastructure of the Virtual and Atomic Molecular Data Center (VAMDC)

 Implementation of Dynamic Data Citation at the
Vermont Monitoring Cooperative

 Adoption of the RDA Data Citation of Evolving Data Recommendation to
Electronic Health Records

20RDA Recommendations - Summary

 Benefits
 Allows identifying, retrieving and citing the precise data

subset with minimal storage overhead by only storing the
versioned data and the queries used for extracting it

 Allows retrieving the data both as it existed at a given point in
time as well as the current view on it, by re-executing the same
query with the stored or current timestamp

 It allows to cite even an empty set!
 The query stored for identifying data subsets provides valuable

provenance data
 Query store collects information on data usage, offering a

basis for data management decisions
 Metadata such as checksums support the verification of the

correctness and authenticity of data sets retrieved
 The same principles work for all types of data

21Agenda

 12:00 Introduction, Welcome
 12:10 Short description of the WG recommendations
 12:30 Reports by Adopters / Pilots

 ESIP Guidelines
 ISO 690 Standard
 NICT Plattform
 No-SQL (MongoDB) for CKAN
 Dendro Data Repository
 OpenEO: Earth Observation Data Center (EODC)

 13:00 Review of Recommendations text / lessons learned
 13:20 Other issues, next steps

22Reference Implementations & Standards

Reference Implementations
 MySQL – Stefan Pröll
 CSV via MySQL – Stefan Pröll
 CSV-files via GIT – Kristof Meixner
 NoSQL via MongoDB in CKAN – Florian Wörister

Standards
 ISO 690:2010, Information and documentation — Guidelines for

bibliographic references and citations to information resources,
p.43, Sec. 16.13.5, 4th ed. 2018-09-11 – Juha Hakala

 ESIP: Data Citation Guidelines for Earth Science Data
Version 2 (draft) – Mark Parsons

23Key Adopters so far…

 Electronic Health Records at the Univ. of Washington in
St. Louis – Leslie McIntosh

 Vermont Monitoring Cooperative – James Duncan
 Virtual Atomic and Molecular Data Center (VAMDC) –

Carlo Maria Zwölf
 Climate Change Centre Austria (CCCA)
 Open Earth Observation - Earth Observation Data Center

(EODC) – Wolfgang Wagner, Bernhard Gößwein
 IPSL (CNRS) – Sebastian Denville

24Ongoing Adoption Projects

 Ocean Networks Canada - Reyna Jenkyns
 Deep Carbon Observatory - Mark Parsons
 MyHealth MyData – Rudolf Mayer
 Smart Data Platform at NICT, Japan – Koji Zettsu
 Dendro Data Repository – João da Silva

RDA WGDC Recommendations in
ESIP Guidelines

Mark Parsons

26ESIP: Data Citation Guidelines for
Earth Science Data Version 2

RDA WGDC Recommendations in
ISO 690, Information and

documentation — Guidelines for
bibliographic references and citations

to information resources

Juha Hakala

28ISO 690:2010

29ISO 690:2010

Data Provenance
for Smart Data Platform

Koji Zettsu, Yasuhiro Murayama
National Institute of Information and Communications Technology

Japan

Data Provenance
for Smart Data Platform

A Draft Plan

Koji Zettsu, Yasuhiro Murayama
National Institute of Information and Communications Technology

Japan

April 1, 2019

Sep. 2013 Contributed article in “out of cite, out of mind”
(Data Science Journal 12(13)) published by CODATA‐ICSTI Task
Group on Data Citation Standards and Parities

Sep. 2013 [RDA‐P2] Started discussion with A. Rauber (RDA Data Citation
WG chair)

Nov. 2014 Research presentation at SciDataCon 2014 (New Delhi):
“Mining Data Citation for Usage Analysis of Open Science
Data”

Oct. 2016 RDA Data Citation WG recommendation published
(DOI: http://dx.doi.org/10.15497/RDA00016)

Apr. 2017 [RDA‐P9] Kick‐off presentation of Japanese adoption (dynamic
data citation) at RDA Data Citation WG

Sep. 2017 [RDA‐P10] “Interim report” talk of the dynamic data citation
work

Oct. 2017 Research presentation at CODATA 2017 (St. Petersburg) : “A
Data Citation System Framework for Identification of Evolving
Data”

Apr. 2018 Start present work data provenance for a Smart Data Platform
in NICT Real Space Information Analysis project

(C) NICT
32

History

Static
data citation

Dynamic
data citation

Data provenance
for Smart Data

2019/4/1

 A high degree of convergence
between cyberspace (virtual
space) and physical space (real
space) through IoT

 Interdisciplinary data
collaboration for complex
problem solving in smart
societies

 Data‐driven AI with Smart Data
• IoT big data collected and

processed to be turned into
‘actionable information’

• Fairness, Accountability,
Transparency in Machine
Learning (FAT/ML)

33

Background: Super Smart Society

Source: Society 5.0, Cabinet Office of Japan, https://www8.cao.go.jp/cstp/english/society5_0/index.html

Source: EU Digital Single Market, https://en.wikipedia.org/wiki/Digital_Single_Market#/media/File:E‐SENS_architecture.jpg

EU Digital Single Market

2019/4/1 (C) NICT

(C) NICT
34

NICT Cross‐Data Collaboration Platform

Smart Service
Applications

NICT
Integrated Testbed

Event Data Mining

Event Data
Warehouse

APIs

Atmosphere Traffic SNS, etc.
Health

Weather

11 domains of
sensing data
(as of Jan., 2019)

Deep Learning for
Event Data

Event Data Collection

Complex Event Analysis &
Prediction

Dynamic Map
Creation & Navigation

2019/4/1 (C) NICT

Application: Smart Sustainable Mobility

35

Shortest route
Safer route (25%‐lower risk)
Risk‐free route

Traffic
congestion data

Precipitation
radar data

rainfall:15-20mm/h ⇒
speed: <10km/h,

congestion_length:300m-600m
• support=0.14, confidence=0.55, lift=1.37
• # transactions=75, density=59.2

Lat.

Long.

JOIN

Time

 Discovery of association
rules between traffic and
environmental events

 Realtime prediction of mobility risks

 Dynamic search for safer route

2019/4/1 (C) NICT

Application: Smart Environmental Healthcare

36

 Small
Atmospheric
sensor

 Lifelog sensor

 Wearable
health sensor

 Monitoring
station data
(local)

 Monitoring
station data
(regional ‐
transborder)

Past 24‐hours atmospheric
observation data (input)

Next 1‐12 hours prediction
of air quality index* (output)

Deep Learning (CRNN)

 Onboard
atmospheric
sensor

 Drive recorder

Participatory Sensing

AQI‐optimal
route guide app.

Training data
augmentation using
user‐collected data

*) Significance of health effect by polluted air

2019/4/1 (C) NICT

37

Cross‐Data Collaboration Framework

• Weather (DIAS,
PANDA, etc.）

• Atmosphere (AEROS,
etc.）

• Traffic (ITARDA,
JARTIC, etc.）

• Probe car
• Healthcare (medical

recept, wearable
sensor, etc.)

• SNS（Twitter）

Map
Creation API

Route
search

API

Alert
API

Prediction
result data

Training
dataset

Event data （common format）
11 domains・24 kinds・13.3 billion records・13.8TB（as of Jan. 2019)

Association
Mining API

Associative
Prediction API

 Smart sustainable mobility  Smart environmental healthcare

NICT Integrated Testbed DB servers×8, Storage servers×２,
Analysis server×10, Cluster server×36

Service-specific
sensing data collection

Data
Loader

API

Sensing data

Collection Association Training Prediction

Feedback
2019/4/1 (C) NICT

(C) NICT 38

Basic Concepts

 Generate data provenance information as a data flow graph in Cross‐Data
Collaboration Framework based on API logging and dataset versioning

• Enhance the dynamic data citation method presented at CODATA2017*
*) Zettsu, K. and Murayama, Y.: A Data Citation System Framework for Identification of Evolving Data, CODATA2017, St. Petersburg (October, 2017)

 Revise API input datasets and/or parameters by “back‐tracking” a data
provenance graph

 A workbench tool for supporting trial‐and‐error revision work
• Backtracking a data provenance graph
• Revision control of datasets and parameters in a data provenance graph
• Application‐specific summary (or view) of a large data provenance graph

Param set A v 1.0 Param set X

Associative
prediction API

Prediction
result data

Associative dataset
(training data)

Association
mining API

v 1.0

v 1.0

(AQI +) v 1.0

(Atmosphere) v 1.0

Event dataset

(Participatory
sensing)

<Ground truth>

<incorrect>
<backtrack>
(key: location)

<backtrack>
(key: location, association rule)

v 1.1

<revise>

v 1.1 v 1.1

<correct>

[Example of Smart Environmental Healthcare]

2019/4/1

(C) NICT 39

Basic Concepts

 Generate data provenance information as a data flow graph in Cross‐Data
Collaboration Framework based on API logging and dataset versioning

• Enhance the dynamic data citation method presented at CODATA2017*
*) Zettsu, K. and Murayama, Y.: A Data Citation System Framework for Identification of Evolving Data, CODATA2017, St. Petersburg (October, 2017)

 Revise API input datasets and/or parameters by “back‐tracking” a data
provenance graph

 A workbench tool for supporting trial‐and‐error revision work
• Backtracking a data provenance graph
• Revision control of datasets and parameters in a data provenance graph
• Application‐specific summary (or view) of a large data provenance graph

Param set A v 1.0 Param set X

Associative
prediction API

Prediction
result data

Associative dataset
(training data)

Association
mining API

v 1.0

v 1.0

(AQI +) v 1.0

(Atmosphere) v 1.0

Event dataset

(Participatory
sensing)

<Ground truth>

<incorrect>
<backtrack>
(key: location)

<backtrack>
(key: location, association rule)

v 1.1

<revise>

v 1.1 v 1.1

<correct>

[Example of Smart Environmental Healthcare]

2019/4/1

(C) NICT
40

R&D Plan from April 2019 to March 2020

 Prototype implementation on NICT Cross‐Data Collaboration Platform
• API call logging and dataset versioning based on database management
system (PostgreSQL/Greenplum): UDF, virtual table, materialized view etc.

• Workbench tool for Cross‐Data Collaboration Framework in SQL and Python
language

 Usability testing by platform users: developers and data scientists of
target smart applications:
• Smart sustainable mobility: mobility risk prediction based on real time

collection of traffic and environmental data (Fujisawa, etc.)
• Smart environmental healthcare: personal AQI prediction for walking

/running courses with participatory sensing (Tokyo Olympic Game 2020
marathon course, etc.)

 Publish a technical report on the architecture, use case, and reference
implementation based on the prototype and preliminary experiments
- To be published at Smart IoT Acceleration Forum (Japan)

 Opportunities for joint work with RDA Data Citation WG and/or related
groups/projects (?)

2019/4/1

Dynamic Data citation support for
CKAN Repositories

Florian Wörister

42CKAN

 One of the leading Open Source data portal
solutions → “Wordpress for Research Data”

 Organized in datasets that contain several resources (e.g.
csv files, images, text documents, etc.)

 Provides a plugin API (python)

43CKAN Architecturedomain in a nutshell

44CKAN DataStore

 CKAN has a FileStore and a DataStore
 FileStore → stores resources (e.g. a csv File) in

directory
 DataStore → stores resources in a structured form into

a database

 There is a 1-to-1 relationship between a FileStore
resource and a DataStore resource

 A DataPusher service extracts content of tabular files (e.g.
csv) and automatically pushes the data into a datastore

 It is possible to implement a custom DataStore
Backend!

45The CKAN Plugin API

 Plugins are implemented as Python Modules

 Plugins can:

 Provide implementations of already defined Interfaces

 Can override Jinja Templates of CKAN

 Can extend the CKAN API

46The Goal

 Implement a CKAN plugin that:
 follows the RDA recommendations for Data Citation

 provides an interface to fetch data from external data
sources (relational database, NoSQL database,
filestorage, etc.)

 sticks to the DataStore Backend interface,
compatible with already existing CKAN instances and
plugins

47The MongoDatastore CKAN extention

48MongoDB terminology in a nutshell

Relational Database MongoDB

Database Database

Table Collection

Row (Tuple, Entry, …) Document

Column Field

49The MongoDB Aggregation Framework

 A query consists of several ‘stages’

 Each stage modifies the documents it receives and
passes them to the next stage

 In the plugin 3 main stages are applied:
 History Stage → transform the documents to the state

how the database looked at a certain timestamp
 Query Stage → query the data
 Paging Stage → only retrieve the page of interest

50Table View in CKAN

51Screenshots

52Screenshots

53Walk-Through

54R1 - Data Versioning

 Every collection has an id field and the timestamp, when it
was added

 In case of an update, the record is not modified, but the
new version is added to the collection

 In case of an deletion, a document is added, that marks a
certain id as deleted

55R2 - Timestamping

 When inserting a document to a MongoDB collection an
ObjectID is issued, which contains a timestamp

 Notice: In general it is bad practice to add semantics to
an identifier, that is why in future, a separate timestamp
will be used for keeping record of the time of creation!

56R3 - Query Store Facilities

 The information for
query re-execution is
stored in a PostgreDB

 The plugin accesses
this database via an
OR-Mapper
(SQLAlchemy)

57R4 - Query Uniqueness

Queries are normalized (fields are sorted by alphabet)
and then an md5 hash is calculated!

58R5 - Stable Sorting

 Every query is automatically sorted by id prior to user-
defined sorts

59R6 - Result Set Verification

Based on an md5 hash

60R7 - Query Timestamping

61R8 - Query PID

→ As PID, the id value of the query table is used

62R9 - Store the Query

63R10 - Automated Citation Texts

TODO: Add Author,
Dataset Name, Year,
etc. to the generated
Citation Text!

64R11 - Landing Page

65R12 - Machine Actionability

 The plugin provides a retrieve_stored_query method, that
can be called via a REST interface.

 Exposes the result set + meta information (fields of the
query table)

66R13 - Technology Migration

This recommendation addresses a more organisational issue.
The plugin can handle this migrations, as after any
technology change it is possible to validate the whole query
store via the CLI (see R14!)

67R14 - Migration Verification

There is a paster command, that verifies every query in the
query store!

68

Plug-in available on GitHub:

https://github.com/fwoerister/ckanext-mongodatastore

GitHub

Implementation of WGDC
Recommendations in

Dendro System
João da Silva

Scalable Citation of Subsets
of Dynamic Data

An Europe Adoption Grant application
Based on the 14 Recommendations provided by the RDA Data Citation WG

William Fukunaga
(wnfukunaga@gmail.com)

João Rocha da Silva
(joaorosilva@gmail.com)

INESC TEC / Faculdade de Engenharia da Universidade do Porto

• Open-source “Dropbox” + Repository for research data

• Fully developed by INESC TEC and University of Porto

• Domain-specific metadata via extensible graph data model

• Data visibility / access control

• Integrates with any repository (CKAN, ePrints, DSpace…)

https://github.com/feup-infolab/dendro
7
1

Dendro

• Microservice architecture JUST ADDED (1.0-beta)

• OS/infrastructure independent, easy setup & backups

• Dendro and all dependencies powered by Docker containers

• Scale and plug in existing software

• Machine learning for automatic metadata production

• Repository BETA (2.0-beta)

• DataCite PID + citation snippet generation for datasets

• Custom Visibility Embargoed/Custom access

• Faceted Dataset Search
7
3

Problem
• Contents of CSV, XLS, TSV files are extracted and

queryable via MongoDB, but not versioned

• We need to make subsets of versioned data citable
and their contents verifiable

• RDA Data Citation WG Recommendations

7
4

Goals
• Comply with 14 RDA Data Citation WG Recommendations

• Handle large datasets and their versions

• HTTP interface with fully documented REST API

• Publish as a Docker image: scalability through Docker
Swarm

• Streamed I/O: retrieve and process arbitrarily large datasets

• Integrate with any platform, not only Dendro
7
5

Current data model

7
6

Row: {
creator: String,
date: Date,
resourceId: String,
tag: String,
hidden: Boolean,
sheetName: String,
sheetIndex: Number,
rowIndex: Number,
rowContent: []

}

Query: {
hashResult: String,
pid:

String,
queryText: String,
date: Date,
creator: String,

}

A quick experiment...

Both HTTP servers running inside Docker containers on the same hardware. DataVerse
selected for its versioning features. Preliminary results.

Now some larger data!

Both HTTP servers running inside Docker containers on the same hardware. DataVerse
selected for its versioning features. Preliminary results.

Current Status

7
9

Requirement Compliant?
Data Versioning Yes
Timestamping Yes

Query Store Facilities No
Query Uniqueness No

Stable Sorting Yes
Result Set Verification No
Query Timestamping No (yes?)

Query PID No (internal GUIDs only)
Store the Query No

Automated Citation Texts No (DataCite - yes)
Landing Page No

Machine Actionability Yes
Technology Migration No
Migration Verification No

RDA Europe Adoption Grant
proposal

GOAL Satisfy all recommendations (currently 4/14)

GOAL Integrate with Dendro and CKAN

GOAL Compare performance vs. CKAN DataStore and
DataVerse

8
0

OpenEO

Tomasz Miksa, Bernhard Gößwein

openEO | Grant agreement No 776242

OpenEO Product
Reproducibility

Insert title hereGrant agreement No 776242 | 4/3/2019

• Earth Observation
• Data

• Too big for local processing
• Code visits data

• Back‐end operators
• Goal

• Develop common API

OpenEO Overview

OpenEO Overview

84

Client 2Client 1 Client 3

Server 4Server 3Server 2Server 1

Data Citation – why?

85

Process
Graph

#1

Back End #1 Result #1

Process
Graph

#1

Back End #1 Result #2

Different, but why ?
User #1 with
Client #1

User #1 with
Client #1

OpenEO: Overview

86

 OpenEO Client (e.g. Python, R, …)
• The tooling the openEO user uses to connect to a back end and

to define a source data and process chain (process graph) that
gets executed at the back end.
3 Clients planned: Python, R and Javascript.

 OpenEO coreAPI (Specification)
• The definition how the clients and back ends communicate

including guidelines how to implement it. Communication protocol
definition using JSON and RESTful Webservices.

 OpenEO Back end (e.g. EODC, Google Earth Engine)
• Host of source data and processing framework. Every back end

has a back end driver layer handling openEO requests and
translating them to the own processing framework.

• 8 back ends planned: EODC, Google Earth Engine, R Backend,
EURAC, Mundialis, Sinergise, VITO and JRC.

EODC: Overview

87

 Back end of the OpenEO Project
 Processing:
 Uses python code for processing
 Uses Docker container to run the python code
 Uses OpenShift to manage the Docker containers

 Every process of the Process Graph is represented by a
piece of python code.

 So the process graph gets transformed to a docker
container including the python code of every process.

Problem

88

 User defines a process graph using the client library and
sends it to the back end of his choice.

 Back end calculates result and returns it with a download
link for the user.

Process
Graph

#1

Back End #1 Result #1User #1 with
Client #1

Solution: Back-End Context Model

89

 Standalone tool to automatically capture changes on the
back end settings

 Captured Data:
 GitHub Repo (OpenSource Project, the code of the back-ends are on

GitHub)
 Changes of (Git independent) used folders, excluding temporary

folders.
 Operating System and packages installed.
 Supported coreAPI version.

Solution: Data Citation

90

 Current situation at OpenEO
 The source data gets versioned through different filenames.

Persistence of older versions are not guaranteed. (R1)
 Versions of the source data is not done by every back end provider,

the reason for this is the big data amount that is too costly to be
persisted in several versions.

 Our suggestions to OpenEO Backends
 R1: Persistence of old data versions have to be applied.
 R2: Timestamps of data changes have to be persisted on source data

changes.
 R3-9: A Query Store needs to be introduced to the back ends. Most

back ends already use an OGC standard for querying data.
 R10-R14: Need to be added into the core API to have a common

standard for all back ends.

Solution: Processing Context Model

91

 Process Context:

 Input Data
Process Code
Output Data
Timestamps begin/end
Parameters
Execution Environment

Solution: Processing Context Model

92

 Captures the back end context model at the time of the
execution

 There are two levels of detail planned for the capturing of the
processes:
 Capture the result between every process step (optional)
 Capture the result of the whole process chain

 Depends of the back end, what is possible to implement, but
the capturing of the whole process chain is at least doable on
every back end.

What will be developed: Process Capturing

93

Definition of the context models for OpenEO
 Implementation of the processing Context Model on the EODC

Back end (in Python).
 Implementation of the back end Context Model capturing on

the EODC Back end (in Python/Linux)
 Implementation of the data citation tools on the EODC Back

end (in Python/Linux)
 Changes to the Python Client to make the captured data

available to the User and to let the user compare two different
jobs.

 Define suggestions to the OpenEO core API (e.g. a possibility
to choose the data version).

EODC Data Citation

 Initial situation at EODC
 File based data management: Every source data file has a unique

path. Updates on the data result in a new filename.
 There is no guaranteed persistence of deprecated data objects.

These are kept and can be retrieved again from the source data store
(ESA)

 Creation time stamps of the files are persisted in a meta-database.
 Querying the data happens through a Web API using the OGC

standard CSW (see https://csw.eodc.eu)
 Queries and Query results are not persisted

EODC Data Citation

 RDA Recommendations at the EODC back end
 R1: Persistence of old data versions not at EODC (size), but versions

tracked for data identification, old versions available at ESA.
 R2: Timestamps are already available at the existing meta-database

of the EODC back end.
 R3: A Query Store is implemented as an additional table in the

relational database (PostgreSQL).
 R4: Query is defined by the filter processes of the process graph,

these are captured by the EODC back end and stored in a JSON
object. Sorted alphabetically to be used as the unique query.

 R5: Stable sorting is assured by the CSW query, where the resulting
file list is sorted in ascending order (alphabetically).

 R6: The resulting file list is given as a list object sorted alphabetically
in ascending order. This is transferred to a string object, cleaned of
irrelevant characters, fed into SHA-256 hash function.

EODC Data Citation

 RDA Recommendations at the EODC back end
 R7: The timestamp of the query execution is stored
 R8: Query PID is created (using Python UUID), if the same unique

query and resulting hash combination is not in the database yet
 R9: Query Store is implemented as an additional table in the

relational data base (PostgreSQL). The original query is the original
CSW query in XML format. The checksum of the unique query is
implemented by a SHA-256 hash of the unique query. The data-set
description is represented by the data-set identifier used at the EODC
back end (e.g. Sentinel-2A). There is one column added to the query
store to store additional information in a JSON object (e.g. number of
resulting files).

 R10: Citation text for the data-set is already available at EODC, the
generated data PID is added to it, as well as the information that it
was retrieved at the EODC back end.

EODC Data Citation

 RDA Recommendations at the EODC back end

 R11 & R12: Landing page at the EODC back end defined as OpenEO
Endpoint. Publicly accessible, JSON format. Contains link to re-
execute the query and list the result files. Since it is part of the
OpenEO API, it can be accessed from OpenEO clients and be used in
future jobs as input data.

 R13 & R14: These recommendations are not implemented at the
moment, since there are no migrations. There are unit tests written in
the OpenEO Python client testing the basic functionality of the data
identification of the back end.

EODC Data Citation
import openeo
#connect to back end
con = openeo.connect(EODC_DRIVER_URL)
Choose dataset
processes = con.get_processes()
pgA = processes.get_collection(name="s2a_prd_msil1c")
pgA = processes.filter_daterange(pgA, extent=["2017-05-01", "2017-05-31"])
pgA = processes.filter_bbox(pgA, west=10.288696, south=45.935871,
east=12.189331, north=46.905246,crs="EPSG:4326")
Choose processes
pgA = processes.ndvi(pgA, nir="B08", red="B04")
pgA = processes.min_time(pgA)
Create and start job at the back end
This generates the job context model and the input data (query) PID
jobA = con.create_job(pgA.graph)
jobA.start_job()
Returns resolveable Query PID e.g. EODC_DRIVER_URL/collections/qu-d1701f4e-
e7c5-4a83-92e0-9facbd401a06
pidA = jobA.get_data_pid_url()
Re-executes the query and returns the resulting file list.
file_list = con.get_filelist(pidA)
Reusing the data PID with a different workflow
pgB = processes.get_collection(data_pid=pidA)
Choose processes for the new workflow
pgB = processes.ndvi(pgB, nir="B08", red="B04")
pgB = processes.max_time(pgB)
...

Others?
Plans, On-going, Feedback

Anybody

100Adoption Stories

 Let us know if you are (planning to) implement (part of) the
recommendations

 Submit your adoption story to the RDA Webpage:

https://www.rd-alliance.org/recommendations-
outputs/adoption-stories

101Agenda

 12:00 Introduction, Welcome
 12:10 Short description of the WG recommendations
 12:30 Reports by adopters / pilots
 13:00 Review of Recommendations text / lessons learned
 13:20 Other issues, next steps

102R1: Data Versioning

 R1 – Data Versioning: Apply versioning to ensure earlier
states of data sets can be retrieved.

 Most common issues:
 Audit files, transaction logs are not sufficient as roll-back is too costly

to allow recreating an earlier state
 Semantic versioning does not make sense with data (SW: changes

that do not break APIs, purely syntactic, not semantic)
 Granularity of versions often mentioned, but never encountered in any

actual pilot (microsec-updates)
 Size: if versions cannot be kept – then one cannot go back to the

respective state of data
 Principles still ok with higher-granularity versioning, i.e. “stable”

versions when needed (suboptimal, but necessary in specific settings)
 Legally requested deletions must, of course, be physically executed 

such states of data can no longer be re-created

103R1: Data Versioning (cont.)

Semantic Versioning
 Semantic versions are “only” assertions on states of the

data at certain points in time, eg
 Data may be transient / still undergoing changes, whereas after a

certain points in time it has reached a state where no further changes
are expected

 Certain states of data may not be intended for permanent retention,
whereas others may have guarantees of availability over time

 Assertions specified as tags associated to queries, e.g.
 Query “Select * FROM <table> WHERE timestamp_added < ts1 and

ts_deleted >ts1” may carry the assertions “status: not expected to
change” and “availability: 7 years” (preferably from controlled
vocabularies)

 Subset queries are “nested queries” on such “stable versions”

104R2: Timestamping

 R2 – Timestamping: Ensure that operations on data are
timestamped, i.e. any additions, deletions are marked with a
timestamp.

 Most common issues:
 R1 & R2 need to be addressed together
 Should actually be the first recommendation:

 R1: Timestamp all write operations on data
 R2: Ensure that no write operation overwrites/deletes earlier

states of data that one needs to get back to

105R3: Query Store Facilities

 Query Store Facilities: Provide means for storing queries
and the associated metadata in order to re-execute them in
the future.

 Most common issues:
 Actually an operational recommendation: set up a query store
 Not at the same level as the previous two recommendations
 However, R1 – R3 are “compulsory” while most of the subsequent

ones (except for R7 and R9) are optional
 Query store is perceived to get huge (not encountered so far)

(to be addressed in R9: staging area / temporary storage, not
persisting ALL queries forever)

 Some suggest that the user should store the queries -> dangerous,
as any data schema migration would require the data center to
always maintain dynamic query migration services (user cannot
migrate to new data representations)

106R4: Query Uniqueness

 R4 – Query Uniqueness: Re-write the query to a
normalised form so that identical queries can be detected.
Compute a checksum of the normalized query to efficiently
detect identical queries.

 Most common issues:
 Usually less of an issue as most centers support structured access to

data via APIs and “query builders” / faceted browsing  most queries
come in standardized form anyway, little to no re-writing necessary

 Optional, worst case: two semantically equivalent queries get
different PID

 May need guidance on creating the hash input string for the
checksum computation (e.g. removing spaces, CR/LF, …)
(but: standard for checksum computation in many settings)

107R5: Stable Sorting

 R5 – Stable Sorting: Ensure that the sorting of the records
in the data set is unambiguous and reproducible.

 Most common issues:
 Optional, only needed if sequence of results is important
 May need further guidance (e.g. sorting by primary key)
 Causing few issues or concerns so far

108R6: Result Set verification

 R6 – Result Set Verification: Compute fixity information
(checksum) of the query result set to enable verification of
the correctness of a result upon re-execution.

 Most common issues:
 Sometimes confusion on terminology (fixity information vs. checksum

vs. hash key, all quasi-synonymous)
 May require guidance on hash input string computation (removal of

white spaces, more difficult for non-standard data that has internal
structure)

 May need additional guidance on how to do this for very large data
sets (currently: equivalents to primary key column plus row headers)

 Hardly any issues so far

109R7: Query Timestamping

 R7 – Query Timestamping: Assign a timestamp to the
query based on the last update to the entire database (or the
last update to the selection of data affected by the query or
the query execution time). This allows retrieving the data as
it existed at the time a user issued a query.

 Most common issues:
 In practice worries about overlaps between write updates and query

execution -> requires locking or query execution with “available”
timestamp one time delta before the current time, i.e. with according
write operations completed.

 Some groups still use semantic versioning or sequential numbers
 Nothing wrong with numbers, but less generic and: no way to determine

according state of system when only query execution time is known (as
commonly used in references)
 mapping sequence number to timestamp

110R7: Query Timestamping – Semantic Versioning

Why timestamps, why not semantic versioning
 Some prefer to use semantic versioning (minor/major updates that

do not / do change behaviour/interface)
 Advantage: version number indicates relationship btw. versions
 Disadvantage:

 Something that was expected to be a not-changing update may turn out
to induce changes / side-effects later-on

 With data, “minor” updates are hard to think of: changing a typo may
result in a record being found / not found by a query, encoding changes
may break subsequent processing pipelines

 Different semantics / types of use across different communities

 Recommendation
 No semantics in identifier (mantra!)
 Keep identification (version timestamp) and semantics separate
 Semantic version number in addition to timestamp

111R7: Query Timestamping – Distributed Settings

Distributed Setting
 No need for synchronized timestamps across nodes
 Each node keeps local time
 Solution with one central query store (master node):

 Master node distributes queries
 Distributed nodes return query result with local execution timestamp
 Master stores timestamps per node where response received

 Solution with individual query stores
 Distributed nodes store own query and timestamps, return their PIDs
 Central/original query processing node stores query ids of distributed

nodes
 Central node only aggregator

112R8: Query PID

 R8 – Query PID: Assign a new PID to the query if either the
query is new or if the result set returned from an earlier
identical query is different due to changes in the data.
Otherwise, return the existing PID.

 Most common issues:
 Questions on whether it has to be a DOI, or whether one could use a

dual system, e.g. internally some PID and externally a DOI
 Dual DOI assignment in strong demand: one for the <Specific Subset>

of data, emerging from an evolving <Data Source> - mentioned in R9
and documentation, but not explicitly in R8 -> change?

 Theoretically all manageable by the machine-actionable landing page,
but still seems relevant for direct impact accumulation
(Note: danger of requesting 20 DOIs including the meta-data source,
the data infrastructure, … and all forms of contributors…)

113R9: Store Query

 R9 – Store Query: Store query and metadata (e.g. PID,
original and normalized query, query & result set checksum,
timestamp, superset PID, data set description, and other) in
the query store.

 Most common issues:
 Again a procedural rather than a conceptual recommendation
 Sometimes concerns about “query” as basis

(but: cf. filename is query on file system pulling together segments)
 Only reference to <Superset PID> - make 2 PID aspect more visible
 Concerns on massive volume of queries to be stored

 In most cases: relatively small in size
 Some pilots chose a “staging area” where they keep queries for a

certain period of time (1-4 weeks) allowing researchers to select
from their “shopping basket” which data sets they finally used 
assig a PID only to these

114R10: Automated Citation Texts

 R10 – Automated Citation Texts: Generate citation texts in
the format prevalent in the designated community for lowering
the barrier for citing the data. Include the PID into the citation
text snippet.

 Most common issues:
 The heading of this recommendation sounds odd (“automated”…)
 No guidelines from our side on how to do this
 In many cases reference to <Superset PID>
 Sometimes reveals real concerns by data centers: fight about the

actual purpose of a citation, from identification of the data to attribution
of credit

 Conflict between human and machines
 Can be automated, even for complex cases (c.f. Webinar by

Gianmaria Silvello)

115R11: Landing Page

 R11 – Landing Page: Make the PIDs resolve to a human
readable landing page that provides the data (via query re-
execution) and metadata, including a link to the superset (PID
of the data source) and citation text snippet.

 Most common issues:
 Very few issues, seems accepted
 Sometimes discussion whether landing page equals download page
 to be solved elsewhere

 Would – in combination with R12 - potentially solve all issues
concerning the number of <super*>set PIDs and ORCIDs

116R12: Machine Actionability

 R12 – Machine Actionability: Provide an API / machine
actionable landing page to access metadata and data via
query re-execution.

 Most common issues:
 Essential! But not always fully implemented

XML is not necessarily sufficient  common vocabularies are not yet
always present  may need time to mature

 May need explicit link to FAIR principles and FAIR metrics
 Helps in attribution, credit sharing, etc.

117R13: Technology Migration

 R13 – Technology Migration: When data is migrated to a
new representation (e.g. new database system, a new
schema or a completely different technology), migrate also
the queries and associated fixity information.

 Most common issues:
 Very little experience so far
 Essential, as it makes clear why the query store needs to be at the

data infrastructure
 May be challenging wrt. fixity information – the migration of which is

explicitly addressed – may need explanation to stress assertion that
previously computed fixity information corresponds to this new fixity
information (change in structure or change in fixity function)

 May cause conceptual issues: if the data representation (formatting)
changes, is it still the same subset of data (breaking API)

118R14: Migration Verification

 R14 – Migration Verification: Verify successful data and
query migration, ensuring that queries can be re-executed
correctly.

 Most common issues:
 Seems obvious, was added to avoid having 13 recommendations 
 But: led to implementation of a few test-routines that can also be run

continuously in a repository, testing correct recreation of old data sets
in low-load time windows  good practice that should be shared!

119R15?: Anything missing ???

 Is there anything missing that should be added?

 Start a process of collecting feedback from
 Adopters on their experience
 Potential adopters on their concerns and confusions
 All others on whatever they consider worth addressing

 Note: Recommendations describe an “ideal world”
 Reality requires pragmatism
 Partial implementations of recommendations, variations
 Provide feedback on issues, concerns, successes and failures

120Next Steps

 Support in adoption: what kind of support is needed?
(in the end it all boils down to money, but apart from this…)
 Webinars: generic
 Focused workshops for individual pilots
 Joint projects: proposals, …
 Further sessions at plenaries?

 Dissemination of information from on-going pilots
 Structuring: contact, descriptions, results, lessons learned
 Outcomes: reports, slides, publications, code, discussions
 Summary paper on pilots

 New Webinars?
 Anything else? AOB? Wishes?

121Thanks

Thanks!
And hope to see you at the

next meeting
of the

WGDC

