May 10, 2014
Data Types Data Model – Revision 2.0
Data Model
1. Types characterize data.

2. Some types of data are so fundamental that we define them implicitly. E.g., integer, boolean, string, ID, etc. We call them ‘primitive' types.

3. Types are built from other types. We call types that are built from other types ‘derived’ types.

4. Types use properties for such building. Properties are names (potentially identifiers) that establish the context in which types are aggregated to form derived types.

For example, a ‘Person’ type can be defined using three properties - height, weight, and age. Here, the three properties are just names to indicate what the two floating-point values (height and weight) and one integer value (age) are for. For now, properties are primarily intended for machine reading and human reasoning; future versions of the data model may define properties for machine reasoning as well. Wherever applicable, we will reuse existing standards. 	Comment by Cox, Simon (CLW, Highett): All of these values also have a unit-of-measure. I see you discuss below, but I find it jarring to suggest even in passing that ‘height’ and ‘weight’ are merely floating point values. 	Comment by Christophe Blanchi: I think that the example was mostly there to show that properties can be defined in terms of other types, in this case primitive types. I agree with Simon’s comment that these particular attributes should have units, ranges, etc.. The suggestion of leveraging existing efforts such as QUDT is a good one.

5. Formally speaking, a property has a domain (the type that is being built) and a range (the type used for building). 	Comment by Thomas Zastrow: For example, I have property A which belongs to type X. The full qualified name would then be “X.A”. That would allow to have another property of name “A” in another type context, for example “Y.A” where X.A != Y.A --- is that right?	Comment by Christophe Blanchi: Thomas’ comment is right but there is also the possibility of having “absolute” properties. Those properties would have an explicit global ID and would be the same no matter the type context. So, for example, a Point of Contact attribute would have the same meaning from one type to the other. So, in that case the hdl:A in X.hdl:A and Y.hdl:A would be the same.
In the end, properties have to be reusable when appropriate.

6. Types contain at least one property: ‘description’ with a range ’string’ (a primitive type).

7. We recommend that types also contain the following properties; ranges of those properties are specified after the colon.

a. provenance: Contact
Provenance property is intended to capture the person or organization that created this type. Here, Contact is a derived type also pre-defined in the Type Registry to capture point of contact details. 	Comment by Thomas Zastrow: So it will be possible to build a hierarchy of types, where type A can be part of type B? Below, you say that inheritance is not allowed, but what else is this? And how to handle combinations of domains/namespaces then? Where to store the data behind “Contact”? Or is it just another PID – but then we don’t need nested types! This is a *very* tricky point, a lot of unanswered questions …	Comment by Christophe Blanchi: I agree with Thomas, we need to refine the manner in which types can reference other types. In this case, I propose that we have a defined “type relationship” property with a set of agreed upon relationships. So we could have Relationship: includes, extends X or Is Primitive for instance.
In general, I think we need to allow for different communities to have some flexibility in defining their types and how they related to other types.
I agree that nested types can be tricky but given the fact that longer term target "users" of these types are machines, I think we need to allow object oriented / progamming paradims to be implementable within our type definitions.
b. intent: String
Intent property is intended to capture the intent for creating data of this type.
c. explanation-of-use: String
Explanation-of-use property is intended to capture how the creator (of this type) intends others to use this type.
d. mime-types: List of Strings
Mime-types property is intended to capture any mime-types that are applicable or useful for describing the property. For now, only a list is allowed. In the future, how mime-types are related to each other may be captured.	Comment by Thomas Zastrow: Is it really “property” and not “type”? You want to assign a list of mime types to *every* property …?	Comment by Christophe Blanchi: Yes it should be type and not property.
e. semantic-web-links: List of IDs
Semantic-web-links property is intended to capture any Semantic Web or Linked Data URLs that are applicable or useful for describing the property. Like mime-types property, this is only a list. In the future, relationships between these links may be captured.	Comment by Thomas Zastrow: Again, “property” or “type”?	Comment by Christophe Blanchi: Yes.

8. Types when registered in a Type Registry will be assigned a unique ID. Alternatively, type definitions may suggest unique IDs at the time of registration.

Tabled Complexities	Comment by Cox, Simon (CLW, Highett): What do you mean by ‘Tabled’. In US I think this means ‘not dealt with right now’, whereas in some other English-speaking cultures it means ‘put on the table for consideration’ which is effectively the opposite! Probably better use a different word or phrase for an international audience. 	Comment by Cox, Simon (CLW, Highett): Also not dealt with is ‘nested’ types – e.g. the case I raised a couple of months ago, with a zip file, containing an XML document, including data from N different namespaces … and also multi-part types, with header or schema information separate to data, and maybe data in multiple types. 	Comment by Christophe Blanchi: US meaning intended but I think any of these sections could be Tabled in the English-speaking sense if the community wants to address them.	Comment by Christophe Blanchi: The notion of nested types is a tricky one indeed. In the case of the zip file containing an XML document, we may not want to create a persistent type for this but some form of "Lambda Type" that would list the nesting of types. For example zip(xml) or zip([X(A),X(B)] X being a transform and A and B being some other types. This Lambda type states that it is a zip to two files that are X transaforms of files of Type A and B.
1. Note that the words used for naming properties, e.g., description, age, weight, etc., have some hidden semantics. For example, age, weight, and height are measurements, and have units associated with them. Also, in spite of weight and height having the same range (Float), they mean different things. Introducing a notion of ‘attributes’ to further capture the semantics of the properties, such as measurement units, formatting conventions (think dates and timestamps), etc. might be useful. ‘Attributes’ are specifically avoided in this version of the data model for reducing the entry barrier for uptake.	Comment by Thomas Zastrow: People will start defining units etc. as individual properties ….	Comment by Christophe Blanchi: Hopefully we can steer people towards applicable standards but we may not always be able to do so. If not the plan would be to at least be able to relate their approaches. Legacy types will always be an issue so we need to be able to handle them whenever possible.

2. Properties cannot be just English words. They should be unique IDs to encourage reuse. Reuse will indicate the correlation between unrelated datasets. For example, if both Wine Type and Person Type use the same property ‘age’, it indicates some synergistic relationship between Wine and Person type with time. Not to mention multi-lingual issues if natural languages are adopted to identify a property. Assigning unique IDs to properties seems like a good long-term solution to these problems. To keep the barrier to entry low, and for immediate type registry release, properties are not unique IDs in this version of the data model.	Comment by Cox, Simon (CLW, Highett): We and many others are publishing vocabularies online for this, for which the keys are URIs. For example, see http://environment.data.gov.au/def/property/ and http://vocab.nerc.ac.uk/collection/P02/current/ (slightly more friendly view at http://auscope-services-test.arrc.csiro.au/elda-demo/nerc/resource?uri=http://vocab.nerc.ac.uk/collection/P02/current/). Both of these are used by significant communities in environmental sciences. 	Comment by Christophe Blanchi: We definitely want to reuse existing efforts and standard whenever possible.	Comment by Thomas Zastrow: Do we really need that? If a property is fully qualified by its type and its name (“wine.age”, “person.age”) and the type has a unique identifier and it will be not allowed to define more than one property with the same name per type, we are fine 	Comment by Christophe Blanchi: I think that some properties can be defined by their type but others my be independent of their type and mean the same thing globally. For example point of contact, description etc.

3. We realize that the constructs presented here to define types can be used in multiple ways. For example, a community might define ‘temperature’ to be a property with a range ‘Float’. Another community might define ‘temperature’ as a type and include ‘energy-level’ as one of its properties to capture the heat-energy. There isn’t anything we can do about the discrepancy (even if you want to term it like that), other than maybe produce best practices and guidelines wherever applicable.	Comment by Cox, Simon (CLW, Highett): We can guide communities towards some standardization efforts, e.g. QUDT. 	Comment by Christophe Blanchi: Sounds like a great idea to me. The difficulty will come from legacy data that does not fit any such standards and still need to be typed.

4. We also realize that there is a room or role for profiles (or whatever they are called). One reason to introduce the notion of a profile is to allow for inter-community differences in how the types are used: one community might define temperatures in Fahrenheit and the other in Centigrade. Another reason for defining profiles is mandatory versus optional use of certain properties within a type. The third reason could be to capture the variations in controlled vocabulary enforcements. Profiles are also tabled in this version of the data model.

5. While derived types are constructed from other types allowing for type-aggregation, type-inheritance is not supported in this version of the data model. For example, specifying that ‘Type Y is all that Type X is and more’ cannot be defined now. Future version of the data model will venture into these nuances.	Comment by Thomas Zastrow: How many levels of hierarchy do you allow? -> in my opinion, this is a problematic approach.	Comment by Christophe Blanchi: I think we should not enforce any limit. It may be that some types require many levels and others not. The community should dictate the requirements.

6. Once types are defined, services or systems that process, evaluate, visualize, or transform data based on its type can be created and be linked back in the type record. Such uses of type records are anticipated.	Comment by Thomas Zastrow: I don’t understand that: do you want to store that a “.doc” file can be opened with MS Word? Wouldn’t make sense to me.	Comment by Christophe Blanchi: OSs maintain their own list of what file type can be opened by what application. In the world of the type registry, I think it is fine to suggest services, programs, or pieces of code that can be used to process or view the data. If your computer has never seen a .doc file, it asks you whether you want to go on the internet to find an application that can open it. This would be the same thing but even more distributed and flexible.

3

